Class MovingAverageConvergenceDivergence
Import
from NitroFE import MovingAverageConvergenceDivergence
= Moving average convergence divergence (MACD) is a trend-following momentum indicator that shows the relationship between two moving averages of a security’s price. The MACD is calculated by subtracting the 26-period exponential moving average (EMA) from the 12-period EMA.
The result of that calculation is the MACD line. A nine-day EMA of the MACD called the "signal line," is then plotted on top of the MACD line, which can function as a trigger for buy and sell signals.
Methods
Provided dataframe must be in ascending order.
__init__(self, fast_period=26, slow_period=12, smoothing_period=9, fast_operation='mean', slow_operation='mean', smoothing_operation='mean', initialize_using_operation=False, initialize_span=None, min_periods=0, ignore_na=False, axis=0, times=None, return_histogram=False)
special
Parameters:
Name | Type | Description | Default |
---|---|---|---|
fast_period |
int |
specify decay in terms of span, for the fast moving feature, by default 12 |
26 |
slow_period |
int |
specify decay in terms of span, for the slow moving feature, by default 26 |
12 |
smoothing_period |
int |
specify decay in terms of span, for the smoothing moving feature, by default 9 |
9 |
fast_operation |
str |
operation to be performed for the fast moving feature, by default 'mean' |
'mean' |
slow_operation |
str |
operation to be performed for the slow moving feature, by default 'mean' |
'mean' |
smoothing_operation |
str |
operation to be performed for the smoothing moving feature, by default 'mean' |
'mean' |
initialize_using_operation |
bool |
If True, then specified 'operation' is performed on the first 'initialize_span' values, and then the exponential moving average is calculated, by default False |
False |
initialize_span |
int |
the span over which 'operation' would be performed for initialization, by default None |
None |
min_periods |
int |
Minimum number of observations in window required to have a value (otherwise result is NA), by default 0 |
0 |
ignore_na |
bool |
Ignore missing values when calculating weights; specify True to reproduce pre-0.15.0 behavior, by default False |
False |
axis |
int |
The axis to use. The value 0 identifies the rows, and 1 identifies the columns, by default 0 |
0 |
times |
str |
Times corresponding to the observations. Must be monotonically increasing and datetime64[ns] dtype, by default None |
None |
Source code in nitrofe\time_based_features\indicator_features\_movingaverageconvergencedivergence.py
def __init__(
self,
fast_period: int = 26,
slow_period: int = 12,
smoothing_period: int = 9,
fast_operation: str = "mean",
slow_operation: str = "mean",
smoothing_operation: str = "mean",
initialize_using_operation: bool = False,
initialize_span: int = None,
min_periods: int = 0,
ignore_na: bool = False,
axis: int = 0,
times: str = None,
return_histogram=False,
):
"""
Parameters
----------
fast_period : int, optional
specify decay in terms of span, for the fast moving feature, by default 12
slow_period : int, optional
specify decay in terms of span, for the slow moving feature, by default 26
smoothing_period : int, optional
specify decay in terms of span, for the smoothing moving feature, by default 9
fast_operation : str, {'mean','var','std'}
operation to be performed for the fast moving feature, by default 'mean'
slow_operation : str, {'mean','var','std'}
operation to be performed for the slow moving feature, by default 'mean'
smoothing_operation : str, optional
operation to be performed for the smoothing moving feature, by default 'mean'
initialize_using_operation : bool, optional
If True, then specified 'operation' is performed on the first 'initialize_span' values, and then the exponential moving average is calculated, by default False
initialize_span : int, optional
the span over which 'operation' would be performed for initialization, by default None
min_periods : int, optional
Minimum number of observations in window required to have a value (otherwise result is NA), by default 0
ignore_na : bool, optional
Ignore missing values when calculating weights; specify True to reproduce pre-0.15.0 behavior, by default False
axis : int, optional
The axis to use. The value 0 identifies the rows, and 1 identifies the columns, by default 0
times : str, optional
Times corresponding to the observations. Must be monotonically increasing and datetime64[ns] dtype, by default None
"""
self.span_fast = fast_period
self.span_slow = slow_period
self.min_periods = min_periods
self.ignore_na = ignore_na
self.axis = axis
self.times = times
self.fast_operation = fast_operation
self.slow_operation = slow_operation
self.smoothing_operation = smoothing_operation
self.smoothing_period = smoothing_period
self.return_histogram = return_histogram
self.initialize_using_operation = initialize_using_operation
self.initialize_span = initialize_span
fit(self, dataframe, first_fit=True)
For your training/initial fit phase (very first fit) use fit_first=True, and for any production/test implementation pass fit_first=False
Returns --> Smoothed signal line , macd histogram
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataframe |
Union[pandas.core.frame.DataFrame, pandas.core.series.Series] |
dataframe containing column values to create feature over |
required |
first_fit |
bool |
Indicator features require past values for calculation. Use True, when calculating for training data (very first fit) Use False, when calculating for subsequent testing/production data { in which case the values, which were saved during the last phase, will be utilized for calculation }, by default True |
True |
Source code in nitrofe\time_based_features\indicator_features\_movingaverageconvergencedivergence.py
def fit(
self,
dataframe: Union[pd.DataFrame, pd.Series],
first_fit: bool = True,
):
"""
For your training/initial fit phase (very first fit) use fit_first=True, and for any production/test implementation pass fit_first=False
Returns --> Smoothed signal line , macd histogram
Parameters
----------
dataframe : Union[pd.DataFrame, pd.Series]
dataframe containing column values to create feature over
first_fit : bool, optional
Indicator features require past values for calculation.
Use True, when calculating for training data (very first fit)
Use False, when calculating for subsequent testing/production data { in which case the values, which
were saved during the last phase, will be utilized for calculation }, by default True
"""
if first_fit:
self._raw_macd_object = AbsolutePriceOscillator(
fast_period=self.span_fast,
slow_period=self.span_slow,
fast_operation=self.fast_operation,
slow_operation=self.slow_operation,
min_periods=self.min_periods,
initialize_using_operation=self.initialize_using_operation,
initialize_span=self.initialize_span,
ignore_na=self.ignore_na,
axis=self.axis,
times=self.times,
)
self._macd_object = ExponentialMovingFeature(
span=self.smoothing_period,
ignore_na=self.ignore_na,
axis=self.axis,
times=self.times,
operation=self.smoothing_operation,
initialize_using_operation=self.initialize_using_operation,
initialize_span=self.initialize_span,
)
raw_macd = self._raw_macd_object.fit(dataframe, first_fit=first_fit)
macd = self._macd_object.fit(dataframe=raw_macd, first_fit=first_fit)
return raw_macd - macd if self.return_histogram else macd
References
- investopedia, "Moving Average Convergence Divergence (MACD)", https://www.investopedia.com/terms/m/macd.asp#:~:text=The%20MACD%20is%20calculated%20by,for%20buy%20and%20sell%20signals.