Class KaufmanEfficiency
Import
from NitroFE import KaufmanEfficiency
It is calculated by dividing the net change in price movement over 'lookback_period' periods, by the sum of the absolute net changes over the same 'lookback_period' periods.
For your training/initial fit phase (very first fit) use fit_first=True, and for any production/test implementation pass fit_first=False
Methods
__init__(self, lookback_period=4, min_periods=None)
special
Parameters:
Name | Type | Description | Default |
---|---|---|---|
lookback_period |
int |
Size of the rolling window for lookback, by default 4 |
4 |
min_periods |
int |
Minimum number of observations in window required to have a value, by default None |
None |
Source code in nitrofe\time_based_features\indicator_features\_kaufmanefficiency.py
def __init__(self, lookback_period: int = 4, min_periods: int = None):
"""
Parameters
----------
lookback_period : int, optional
Size of the rolling window for lookback, by default 4
min_periods : int, optional
Minimum number of observations in window required to have a value, by default None
"""
self.lookback_period = lookback_period
self.min_periods = min_periods
fit(self, dataframe, first_fit=True)
For your training/initial fit phase (very first fit) use fit_first=True, and for any production/test implementation pass fit_first=False
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataframe |
Union[pandas.core.frame.DataFrame, pandas.core.series.Series] |
dataframe containing column values to create feature over |
required |
first_fit |
bool |
Indicator features require past values for calculation. Use True, when calculating for training data (very first fit) Use False, when calculating for subsequent testing/production data { in which case the values, which were saved during the last phase, will be utilized for calculation }, by default True |
True |
Source code in nitrofe\time_based_features\indicator_features\_kaufmanefficiency.py
def fit(self, dataframe: Union[pd.DataFrame, pd.Series], first_fit: bool = True):
"""
For your training/initial fit phase (very first fit) use fit_first=True, and for any production/test implementation pass fit_first=False
Parameters
----------
dataframe : Union[pd.DataFrame, pd.Series]
dataframe containing column values to create feature over
first_fit : bool, optional
Indicator features require past values for calculation.
Use True, when calculating for training data (very first fit)
Use False, when calculating for subsequent testing/production data { in which case the values, which
were saved during the last phase, will be utilized for calculation }, by default True
"""
if first_fit:
self._kaufman_efficiency_object = weighted_window_features()
_kaufman_efficiency = (
self._kaufman_efficiency_object._template_feature_calculation(
function_name="kaufman_efficiency",
win_function=_identity_window,
first_fit=first_fit,
dataframe=dataframe,
window=self.lookback_period,
min_periods=self.min_periods,
symmetric=None,
operation=self._calculate_kaufman_efficiency,
operation_args=(),
)
)
return _kaufman_efficiency
References
- strategyquant, "Kaufman’s Efficiency Ratio", https://strategyquant.com/codebase/kaufmans-efficiency-ratio-ker/